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Summary. The results of Light and co-workers [J. Chem. Phys. 85:4594 (1986); 
86:3065 (1987); 92:2129 (1990)] for the Hamiltonian matrix of a triatomic van 
der Waals molecule in the discrete variable representation, DVR, is extended to 
complex-scaled Hamiltonians. As an illustrative numerical example the J = 1 
resonances positions and widths of  a van der Waals model system were obtained 
by the calculation of the complex-scaled Hamiltonian matrix in the DVR 
formalism. 
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1. Introduction 

It is now becoming routine to calculate bound rotation-vibration states of  
triatomic molecules from first principles, and computer programs have been 
developed by Sutcliffe, Tennyson, and co-workers [1, 2]. 

Taking into account rotational symmetry, the problem reduces to one 
involving three internal variables. For  an atom-diatom triatomic van der Waals 
molecule, these are conveniently taken to be: r, the diatomic bond length; R, the 
distance from the atom to the center of  mass of  the diatomic; and O, the angle 
between the diatomic bond and the van der Waals bond. 

The rotation-vibration energy levels are then determined by the masses of the 
atoms and the potential energy function V(R, r, 0). Often, this function is 
computed by quantum chemistry techniques, and is known at only fixed values 
of 0. Baric and Light have developed a technique - called the discrete variable 
representation (DVR) - which is well suited to this situation [3]. 
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Tennyson and Henderson have recently treated J = 0 and J = 1 states of H + 
using the DVR approach [4]. Their derivation is well suited for incorporation in 
existing computer programs for triatomic molecules. More recently Choi and 
Light determined the bound and quasibound states up to J = 60 of Ar-HCI van 
der Waals complex by the DVR approach [5]. They obtained the resonance widths 
by calculating the expectation value of the Miller-Schwartz-Tromp [6] outgoing 
symmetrized flux operator. Another recent application of the DVR method is by 
Mlidenovic and Ba6ic to the floppy HCN/HNC molecule [7]. 

The purpose of this work is to show that the DVR approach can be directly 
applied to the calculation of resonance states through the use of complex-scaled 
Hamiltonians [10-13]. The resonance positions and widths are associated with 
complex eigenvalues of the DVR transformed Hamiltonian matrix and there is no 
need to calculate the quasi-bound eigenvectors. In Sects. 2 and 4 we show that 
by complex scaling of the dissociative coordinate only and by using a real basis 
set in the solution of the adiabatic Hamiltonians, the DVR transformed Hamil- 
tonian matrix has a complex symmetric form. As an illustrative numerical example 
we chose a well-worked problem which has been used before as a testbed for new 
theories and computational methods. 

2. The complex wave equation 

In order to determine the resonance positions and widths R is taken as the 
complex scaled coordinate, R = R'  exp(ifl) where R' ~ [0, or] and the non-disso- 
ciative coordinates 0 and r remain unscaled. 

We adopt a body-fixed coordinate system, as described in the introduction. 
We specify that the body-fixed z-axis coincides with the van der Waals bond, and 
that the diatomic lies in the body-fixed xz-plane. With these coordinates, 
stationary state eigenfunctions of the total angular momentum (quantum num- 
bers, J, M) have the form: 

J 
7 j = ~ za(R, r, O)DS~(~fly) (1) 

f 2 = - - J  
where DSM is a representation coefficient of the rotation from space-fixed to 
body-fixed coordinates, and ~, t ,  ~ are the Euler angles specifying the transforma- 
tion. 

The internal wavefunctions ga satisfy a set of coupled equations: 

,-,~-5-S" ( - ~  + J(J + 1)2#R2+J'~ -- 202 F--2#aff~ -t-' --+]2(O)2#dr 2 ~a(r) + V(R, r, O) -- E}  zo(R, r, O) 

(J, a)f_(8) (s, a)f+ (a) 
= 2#R 2 Za+I+ - 2#R 2 Zn-1 (2) 

In these e~uations,/7 a (r) is the diatomic potential energy; 12 is the quantum number 
of J~ andjz; andf2(f2), f_+ (f2) are the diatomic angular momentum operators. Also: 

,~+ (J, Q) = [J(J + 1) - ~2(~ +_ 1)] 1/2 (3) 

The natural basis for representing the 0-dependence of the Za is the set of 
associated Legendre polynomials, which satisfy 

~P~ =j(j + 1)P~ (4) 
}_+ e j~  = ~___ ( j ,  ~.~)p? +1 
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Hence: 

za(R, r, O) = ~ Pjo(O)zj~a(R, r), j = f2, O + 1 , . . .  (5) 
j=f2 

Substituting this expansion into Eq. (2) and using the parity relation: 

za(R, r, O) =p(--)sZ_a(R,  r, 0), p = _+ 1 (6) 

results in an expanded set of coupled equations [8, 9]. 

2# + 2#R 2 2#ar 2 I- ~'a(r) - E  Xja 

+ ~ <j~[V[j'O>Zj,a 
j ' = O  

2+ (J, 0)2+ (j, (2) 2 (J, g2))._ (j, 0) 
= f+  2#R 2 Xj-,o +1 + f -  2#R 2 Zj, a -  1 (7) 

where 

f+ = [1 +p(  --)s(aao + 6a + 1,o)] 1/2 (8) 

In these equations, O takes on only non-negative values greater than O, where: 
f~ = [1 - p (  - ) q / 2 .  Also: 

<jO [P[j'O > = _I P~ (O)P(R, r, O)P~(O) dzo (9) 

For compactness of notation, it is convenient to write Eq. (7) in a matrix 
notation: 

(H -- E1);t = 0 (10) 

where H is a partitioned matrix of operators: 

-),~t7+1 H a + I ' - E 1  -2a+ l , a+2  (11) 
H =  t Ha+ 2_  E1 - - 2 0 +  1,0+2 

and Z is a partitioned vector: 

The diagonal matrices H~ contain only diagonal elements except for the 
matrix of V(R, r, 0). The off-diagonal matrices 2a,a + 1 are matrices in which only 
the elements on the diagonl lying below the main diagonal have non zero values• 
As a result of the complex scaling the Hamiltonian matrix/-? given in Eq. (11) 
has a complex symmetric form. 

3. The DVR transformation of the complex symmetric Hamiltonian matrix 

Following Ba6ic and Light [3], we define a non-square DVR transformation 
matrix T a with elements: 
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T~=co~/2P~(O~) ~ = 1 , 2  . . . . .  N~;j = f2, f2 + 1 . . . .  , N~ + f2 (13) 

where 0~ and ~o~ are respectively the points and weights of a N~-point Gaussian 
quadrature• The points and weights depend upon f2, but we shall not reflect this 
in the notation (the definition of the quadrature points of f2 > 0 is given in Sect• 
4). Because of the properties of orthogonal polynomials: 

TOtT~= T ° T  m = 1 (14) 

From the T ° we form a partitioned transformation matrix T with diagonal 
elements T ~, and use it to transform Eq. (10): 

Tt(H -- E1)T(Ttz)  = 0 

or  

(15) 

( / t  - E 1 ) ~  = 0 

The advantage of this transformation is that it brings the matrix of V(R, r, O) 

+ Va(r) + I~(R, r, 0~) (23) 

(21) 

(22) 

Then, the matrix/-t has the partitioned form: 

1To--El  _Lo, a+I _ 0 
(/Z~,~+ 1) t H~+I--E1 L~+ 1,(~+ 2 

where the diagonal blocks have the structure: 

and 
R ~  "g p2 ff~ J(J + 1) -- 2Q 2 

into diagonal form. Let us examine this step in detail: 

(TmVTa)~,~ = ~ ~ T~ , ( j ' f 2  IVIJfa) T~ (16) 
j" j 

The rule for numerical quadrature is, however: 

(j '(2 IwlJo> - E  P~(O=,,)V(R, r, O~,)P~ (O~,,,)o9~,, 

= Z T ~ ,T ~ ,V ( R ,  r, 0~,,) (17) 
c¢" 

Substituting Eq. (17) into Eq. (16), and making use of Eq. (14) gives: 

(T°*VT°)~,~ = V(R, r, 0,)6~,, (18) 

The disadvantage of the DVR transformation is that any term in H involving 
f becomes nondiagonal. Thus we define £o with elements. 

[ 1 1 ] N ~  ° f2 O 
= j ( j  + 1)Tj~.Tj~ (19) 

and/So.o +t with elements: 
,1.+ (J, ~2) N ~  o 

, ,  , ~#R~ O) Tj~, T)~ ( 2 0 )  E a ' a O O + I  = --f+ j=~-~ 1~+ 4+( j ,  O 0+1  
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Except for the approximation made in Eq. (17), Eq. (15), with elements defined 
in Eqs. (19-23), is equivalent to the original set of coupled equations, Eq. (10). 
The eigenvector ~ is still blocked according to (2, but within each block has 
elements labelled by a. The eigenvector X is obtained by transformation: 

Z = T~ (24) 

In Eq. (23), since 0~ depends on ~, it might be presumed that the potential 
V would need be evaluated at all of the Gaussian points. It is consistent with the 
approximation made in Eq. (17) to evaluate V at the points for O = 0, and use 
polynomial interpolation to evaluate V at the points for O > 0. So far the use of 
complex scaled coordinate R has not introduced any complication, apart from 
the requirement that 17 be dilation analytic in R' (even this requirement can be 
avoided by using the exterior scaling procedure). 

4. The finite basis set approximation 

The coupled equations represented by Eq. (15) may be solved approximately by 
expanding :~ in a basis of product functions depending on R and r. We choose 
eigenfunctions of the adiabatic Hamiltonian: 

2# + ~ d  + ~'d(r) + V(R, r, 0~) -- ek(O~) Ck=(R, r) = 0 (25) 

Note that when R is complex scaled ek and Ck, are complex too (for bound states 
ek are real)• The complex Ck= are obtained at ~'s for ~ = t2, t2 + I , . . . .  The 
procedure by which the quadrature points for different (2 values are obtained is 
described in Sect. 4 (see Eqs. (36-37)). 

This basis is independent of J and ~, and can be used to expand the elements 
of )~: 

~ a  = )-', eke(R, r)Ck,a (26) 

The coefficients Ck,a and the rotation-vibration energies E are then obtained as 
eigenvalues of 

(H -E1)C = 0 

where 

Ha-E1 La,a+ l 0 . . .] 
1~= (La'a+l)* Ha+I-E1 La+I.a+2 (27) 

0 (La+l,a+2)* H a + z -  E1 
• • , 

where 

](J + 1) - 2 ~  ~ <¢~,~1 1 

(28) 
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and 

Ho:'k',~k,(2"~ ~- ( (ak'='l£='=a'a I Ck= ) (29) 

Making use of Eqs. (19) and (20), we have: 

N~+a 1 1 
<¢~,:,1C,:~1+~:> = E J ( J  + a a +=~ l) T)=, T)= <Ok,:, [ 2~-~ + 2~-~ I Ck: > (30) 

and 

N=+a O'~T O T a + l  i ^ 1 "  <¢k'+lC'=a'alCk=>=--f+<(Z a) L 2+ (J, ---- ,+ : ;= <¢k'=" Ick=> z#K: j = o + l  

(31) 

Thus, we see that, after solving for the eigensolutions {ek(0:), 4}, we need only 
compute the matrices of R-2 and r-2 and diagonalize the matrix H to obtain the 
rotation-vibration energies and wavefunctions. 

5. Illustrative numerical example - Resonance positions and matrix 
by the complex sealed DVR 

Resonance positions and widths are obtained by performing an analytical 
continuation [10-13] of the DVR formalism as has been shown in Sects. 3-4. 

By scaling the reaction coordinate into the complex plane according to: 

R '  -+ R" e it3 - R (32) 

we obtain a complex symmetric Hamiltonian matrix. This matrix's complex 
eigenvalues give the resonance positions (real part of the eigenvalue), and widths 
(imaginary part of the eigenvalue), provided that they are stable with respect to 
variation of the scaling angle ft. 

We tested our method on a model potential proposed by Levine, Johnson, 
Muckerman, and Bernstein [15]. The potential describes the interaction of 
structureless atom weakly bound to diatomic rigid rotor. 

The Hamiltonian of the system is given by: 

1 [_h2 ~2 &R)-I Bro, f~(r) V(R, O) &R, 0) = ~ gR~ + -RT j + + 

where 

V(R, O) = Vo(R) + V2(R)P2(cos O) 

Vo+=4  

V2(R) = 0.6e (33) 

with the parameters 

6 = 3.0 ~ e = 384.092 cm- 

Bro, = 60.962 cm -1 p = 1.34015 a.u. (34) 

The J = 0 resonances of this system were investigated using the Complex 
Coordinate Method (CCM) by various authors [14, 16-19]. The J =  1 even 
parity states were investigated by Chu [ 17]. 
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We applied the DVR procedure described in Sects. 1-3, using 30 harmonic 
oscillator basis functions with frequency co = 1 in order to describe the spatial 
coordinate, and dissecting the angular coordinate into N~ = 7 quadrature angles. 

The quadrature angles are O-dependent, and were obtained as the eigen- 
values of a matrix .4: 

.4J;= (e~(°) lc°s° lP~' (° ) )=~/(2j  + l)(2j" + l) 0 0 

The eigenvectors of the A matrix give the quadrature weights, multiplied by 
the appropriate polynomial: 

Tg = x / / -~e f  (cos 0,) (36) 

The main advantage of this approach is that it prevents the need to calculate 
directly the value of the associated Legendre polynomials at the quadrature 
points. 

The transformation vectors, T~, are all we need in the subsequent calcula- 
tions. 

6. Results 

Converged results for the J = 0 and the J = 1 resonances are presented in Tables 
1 and 2, respectively. 

For J = 0, the converged value was arrived at with a scaling angle of 
B = 0.30 (see Fig. 1). For J = 1 the resonances at positions 104.14 and 118.05 
converged at fl = 0.28 and fl = 0.31, respectively (see Figs. 2, 3). 

As can be seen from Tables 1 and 2, our results slightly differ from results 
previously obtained for this system. This might be due to the fact that in Refs. 
[14, 17 and 19] the wavefunction was expanded as a sum of only two (even) 
j-states, j = 0 and j = 2, whereas, in our calculation, 7 quadrature points, 
corresponding to j = 0, 6 were used. 

The convergence of the resonance of J = 0, with respect to the number of 
quadrature points, is shown in Table 3. It is indeed evident from Table 3, that 
if we use 4 quadrature points, corresponding to j = 0, 1, 2, 3, the result obtained 
is very similar to the values of Refs. [14, 17 and 19]. Only the inclusion of an 

Table 1. Comparison of  resonance energies and widths for J = 0 by various methods 

Method E R (can -1) F (cm -1) 

SFCCCC a 114.47 1.79 
BFCCCC b 114.47 1.79 
CC ° 114 2.09 
CCM d 114.53 2.03 
This work-complex DVR 114.05 2.03 
This work-CCM e 114.05 2.03 

a Space fixed complex coordinate coupled channel method, Ref. [ 14] 
b Body fixed complex coordinate coupled channel method Ref. [ 16] 
c Numerical solution of  coupled equations Ref. [15] 
d Space fixed complex coordinate method, Ref. [19] with P0 and P2 as the radial basis set 
e Same as d, but with Po, P2 and P4 as the radial basis set 
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Table 2. Comparison of the complex resonance energies for J = 1 by various methods 

Method J = 1 1 ~t resonance energy J = 1 2 nd resonance energy 

BFCCCC a 103.041 - 0.233i 120.065 - 0.758i 
BFCCCC CD b - -  116.525 - 0.966i 
This work 104.14 - 0.16i 118.05 - 0.84i 

a Body fixed complex coordinate coupled channel method, Ref. [16] 
b Body fixed complex coordinate coupled channel method, with centrifugal decoupling approxima- 
tion, Ref. [ 16] 
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Fig. 1, f-Trajectory calculations for the 
rotational predissociation resonance of the 
triatomic van der Waals model at J = 0. 30 
harmonic oscillator basis functions were used 
for the spatial coordinate. A grid of 7 angles 
was used to express the radial coordinate. In 
the graph, the symbol 0 is used instead of/3 
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Table  3. Convergence  of  the complex  resonance  energy 

of  J = 0 wi th  respect  to the n u m b e r  of  q a u d r a t u r e  

poin ts  - N o 

N~ J = 0 Resonance  energy 

3 103.95 -- 36.134i 

4 114.52 -- 0.991 i 
5 114.03 -- 1.016i 

6 1 1 4 . 0 5 -  1.015i 

7 1 1 4 . 0 5 -  1.015i 

additional even j-state, j = 4, alters this result. We also repeated the calculations 
of Ref. [19] for the resonance at J = 0, adding P4 to the radial basis set. The 
result, also presented in Table 1, was identical to the result obtained with DVR. 

I t  is not possible to use a very small number of points of the DVR 
calculation, since the method is based on the expansion of the unity operator in 
(associated) Legendre polynomials (Eq. (14)). The method is, therefore, espe- 
cially suited to problems with strong coupling between different j-states, where 
we anyway cannot truncate the expansion of the wavefunction in (associated) 
Legendre polynomials after a small number of terms. 

7. Conclusions 

To obtain rotation-vibration wavefunctions, bound states and resonance energies 
the following steps are required: 

1. Solve Eq. (25) to obtain {ck(0~), q~k~(R, r)}. R is complex scaled by the factor 
exp(ifl). The quadrature points of t2 ~ 0 are defined in Eqs. (36-37). In order to 
get complex symmetric Hamiltonian matrices real basis functions to expand q~k~ 
should be used. 

2. Construct the matrices of R -2 and r -2 in the basis q~k~. 

3. Construct the complex symmetric matrix / t  (Eq. (27)) according to Eqs. 
(28-31). 

4. Diagonalize H and obtain the eigenvectors C and energies E. 

5. Construct the internal wavefunctions Xa, using the transformations given by 
Eqs. (26), (24) and (5). 

Zjo(R, r) = Z T ~ o  
Gt 

= Z E T~Ck,a(ok~(R, r) (37) 
k 

and 

with 

z~(R, r, O) = Z P~(O)zjo(R, r), f2 >~0 (38) 
j = O  

za(R, r, 0) = p ( - ) s z _ a ( R ,  r, O) (39) 



56 N. Lipkin et al. 

The formalism presented here results in a complex symmetric Hamiltonian 
matrix. In such a case the expectation valve of any given operator 0 is defined 
by: 

f •a(R, rO)Oz~(R, O) dR dr dz o (40) F~ 

(i.e., (Z*10]Xa>) and not by the conventional scalar product <Za[0lZa>). 
However, it is not hard to apply the DVR approach to complex scaled Hamilto- 
nians when complex basis functions are used. In such a case the Hamiltonian 
matrix will not have a complex symmetric form and expectation values or 
transition amplitude matrix elements should be calculated with some further 
caution. The right eigenfunctions are obtained by the diagonalization of the 
Hamiltonian matrix H (Eq. (27)) as described in the text. The left eigenfunctions, 
however, are obtained by the diagonalization of the transposed matrix H t (see 
the discussion on e-inner product in Ref. [20]). The numerical study given in 
Sect. 5 illustrates the applicability of the complex DVR procedure in calculating 
resonance positions and widths. The use of the DVR approach in calculating 
resonance positions and widths of more realistic systems is now under process. 
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